Triangle
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2],
[3,4],
[6,5,7],
[4,1,8,3]]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
题目大意:给定一个上述的三角形,寻找从顶到底和最小的路径,要求空间复杂度O(N)
题目难度:Medium
import java.util.*;
/**
* Created by gzdaijie on 16/6/11
* 动态规划, i 从 len -> 0
* fun(k) = min(fun(k), fun(k + 1)) + matrix[i][k]
*/
public class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
int len = triangle.size();
int[] result = new int[len + 1];
for (int i = len - 1; i >= 0; i--) {
List<Integer> row = triangle.get(i);
for (int j = 0; j <= i; j++) {
result[j] = Math.min(result[j], result[j + 1]) + row.get(j);
}
}
return result[0];
}
}